Skip to content

Python Client

vitallens is a Python client for the VitalLens API, using the same inference engine as our free iOS app VitalLens. Furthermore, it includes fast implementations of several other heart rate estimation methods from video such as G, CHROM, and POS. Find vitallens on GitHub.

  • Accepts as input either a video filepath or an in-memory video as np.ndarray
  • Performs fast face detection if required - you can also pass existing detections
  • vitallens.Method.VITALLENS supports heart rate, respiratory rate, pulse waveform, and respiratory waveform estimation. In addition, it returns an estimation confidence for each vital. We are working to support more vital signs in the future.
  • vitallens.Method.{G/CHROM/POS} support faster, but less accurate heart rate and pulse waveform estimation.
  • While VITALLENS requires an API Key, G, CHROM, and POS do not. Register on our website to get a free API Key.

Installation

General prerequisites are python>=3.8 and ffmpeg installed and accessible via the $PATH environment variable.

The easiest way to install the latest version of vitallens and its Python dependencies:

pip install vitallens

Alternatively, it can be done by cloning the source:

git clone https://github.com/Rouast-Labs/vitallens-python.git
pip install ./vitallens-python

How to use

To start using vitallens, first create an instance of vitallens.VitalLens. It can be configured using the following parameters:

Parameter Description Default
method Inference method. {Method.VITALLENS, Method.POS, Method.CHROM or Method.G} Method.VITALLENS
mode Operation mode. {Mode.BATCH for indep. videos or Mode.BURST for video stream} Mode.BATCH
api_key Usage key for the VitalLens API (required for Method.VITALLENS) None
detect_faces True if faces need to be detected, otherwise False. True
estimate_running_vitals Set True to compute running vitals (e.g., running_heart_rate). True
fdet_max_faces The maximum number of faces to detect (if necessary). 1
fdet_fs Frequency [Hz] at which faces should be scanned - otherwise linearly interpolated. 1.0
export_to_json If True, write results to a json file. True
export_dir The directory to which json files are written. .

Once instantiated, vitallens.VitalLens can be called to estimate vitals. In Mode.BATCH calls are assumed to be working on independent videos, whereas in Mode.BURST we expect the subsequent calls to pass the next frames of the same video (stream) as np.ndarray. Calls are configured using the following parameters:

Parameter Description Default
video The video to analyze. Either a path to a video file or np.ndarray. More info here.
faces Face detections. Ignored unless detect_faces=False. More info here. None
fps Sampling frequency of the input video. Required if video is np.ndarray. None
override_fps_target Target frequency for inference (optional - use methods's default otherwise). None
export_filename Filename for json export if applicable. None

Returned estimation results

vitallens returns estimates of the following vital signs if using Mode.BATCH with a minimum of 16 frames:

Name Type Returned if
heart_rate Global value Video at least 2 seconds long and using Method.VITALLENS, Method.POS, Method.CHROM or Method.G
running_heart_rate Continuous values Video more than 10 seconds long and using Method.VITALLENS, Method.POS, Method.CHROM or Method.G and estimate_running_vitals=True
ppg_waveform Continuous waveform Using Method.VITALLENS, Method.POS, Method.CHROM or Method.G
respiratory_rate Global value Video at least 4 seconds long and using Method.VITALLENS
running_respiratory_rate Continuous values Video more than 30 seconds long and using Method.VITALLENS and estimate_running_vitals=True
respiratory_waveform Continuous waveform Using Method.VITALLENS

The estimation results are returned as a list. It contains a dict for each distinct face, with the following structure:

[
  {
    'face': {
      'coordinates': <Face coordinates for each frame as np.ndarray of shape (n_frames, 4)>,
      'confidence': <Face live confidence for each frame as np.ndarray of shape (n_frames,)>,
      'note': <Explanatory note>
    },
    'vital_signs': {
      'heart_rate': {
        'value': <Estimated global value as float scalar>,
        'unit': <Value unit>,
        'confidence': <Estimation confidence as float scalar>,
        'note': <Explanatory note>
      },
      'respiratory_rate': {
        'value': <Estimated global value as float scalar>,
        'unit': <Value unit>,
        'confidence': <Estimation confidence as float scalar>,
        'note': <Explanatory note>
      },
      'ppg_waveform': {
        'data': <Estimated waveform value for each frame as np.ndarray of shape (n_frames,)>,
        'unit': <Data unit>,
        'confidence': <Estimation confidence for each frame as np.ndarray of shape (n_frames,)>,
        'note': <Explanatory note>
      },
      'respiratory_waveform': {
        'data': <Estimated waveform value for each frame as np.ndarray of shape (n_frames,)>,
        'unit': <Data unit>,
        'confidence': <Estimation confidence for each frame as np.ndarray of shape (n_frames,)>,
        'note': <Explanatory note>
      },
      'running_heart_rate': {
        'data': <Estimated value for each frame as np.ndarray of shape (n_frames,)>,
        'unit': <Value unit>,
        'confidence': <Estimation confidence for each frame as np.ndarray of shape (n_frames,)>,
        'note': <Explanatory note>
      },
      'running_respiratory_rate': {
        'data': <Estimated value for each frame as np.ndarray of shape (n_frames,)>,
        'unit': <Value unit>,
        'confidence': <Estimation confidence for each frame as np.ndarray of shape (n_frames,)>,
        'note': <Explanatory note>
      }
    },
    "message": <Message about estimates>
  },
  { 
    <same structure for face 2 if present>
  },
  ...
]

Examples to get started

Live test with webcam in real-time

Test vitallens in real-time with your webcam using the script examples/live.py. This uses Mode.BURST to update results continuously (approx. every 2 seconds for Method.VITALLENS). Some options are available:

  • method: Choose from [VITALLENS, POS, G, CHROM] (Default: VITALLENS)
  • api_key: Pass your API Key. Required if using method=VITALLENS.

May need to install requirements first: pip install opencv-python

python examples/live.py --method=VITALLENS --api_key=YOUR_API_KEY

Compare results with gold-standard labels using our example script

There is an example Python script in examples/test.py which uses Mode.BATCH to run vitals estimation and plot the predictions against ground truth labels recorded with gold-standard medical equipment. Some options are available:

  • method: Choose from [VITALLENS, POS, G, CHROM] (Default: VITALLENS)
  • video_path: Path to video (Default: examples/sample_video_1.mp4)
  • vitals_path: Path to gold-standard vitals (Default: examples/sample_vitals_1.csv)
  • api_key: Pass your API Key. Required if using method=VITALLENS.

May need to install requirements first: pip install matplotlib pandas

For example, to reproduce the results from the banner image on the VitalLens API Webpage:

python examples/test.py --method=VITALLENS --video_path=examples/sample_video_2.mp4 --vitals_path=examples/sample_vitals_2.csv --api_key=YOUR_API_KEY

This sample is kindly provided by the VitalVideos dataset.

Use VitalLens API to estimate vitals from a video file

First, we create an instance of vitallens.VitalLens named vl while choosing vitallens.Method.VITALLENS as estimation method and providing the API Key.

Then, we can call vl to estimate vitals. In this case, we are estimating vitals from a video located at video.mp4. The result contains the estimation results.

from vitallens import VitalLens, Method

vl = VitalLens(method=Method.VITALLENS, api_key="YOUR_API_KEY")
result = vl("video.mp4")

Use POS method on an np.ndarray of video frames

First, we create an instance of vitallens.VitalLens named vl while choosing vitallens.Method.POS as estimation method. No API Key is required.

Then, we can call vl to estimate vitals. In this case, we are passing a np.ndarray my_video_arr of shape (n, h, w, c) and with dtype np.uint8 containing video data. We also have to pass the frame rate my_video_fps of the video.

The result contains the estimation results.

from vitallens import VitalLens, Method

my_video_arr = ...
my_video_fps = 30
vl = VitalLens(method=Method.POS)
result = vl(my_video_arr, fps=my_video_fps)

Run example script with Docker

If you encounter issues installing vitallens dependencies directly, you can use our Docker image, which contains all necessary tools and libraries. This docker image is set up to execute the example Python script in examples/test.py for you.

Prerequisites

  • Docker installed on your system.

Usage

  1. Clone the repository
git clone https://github.com/Rouast-Labs/vitallens-python.git && cd vitallens-python
  1. Build the Docker image
docker build -t vitallens .
  1. Run the Docker container

To run the example script on the sample video:

docker run vitallens \          
  --api_key "your_api_key_here" \
  --vitals_path "examples/sample_vitals_2.csv" \
  --video_path "examples/sample_video_2.mp4" \
  --method "VITALLENS"

You can also run it on your own video:

docker run vitallens \          
  --api_key "your_api_key_here" \
  --video_path "path/to/your/video.mp4" \
  --method "VITALLENS"
  1. View the results

The results will print to the console in text form.

Please note that the example script plots won't work when running them through Docker. To to get the plot as an image file, run:

docker cp <container_id>:/app/results.png .

Linting and tests

Before running tests, please make sure that you have an environment variable VITALLENS_DEV_API_KEY set to a valid API Key. To lint and run tests:

flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
pytest

Build

To build:

python -m build