Skip to content

Python Client

vitallens is the official Python client for the VitalLens API, a service for estimating physiological vital signs like heart rate, respiratory rate, and heart rate variability (HRV) from facial video.

The library provides:

  • A simple interface to the powerful VitalLens API for state-of-the-art vital sign estimation.
  • Implementations of classic rPPG algorithms (POS, CHROM, G) for local, API-free processing.
  • Support for video files and in-memory video as np.ndarray
  • Fast face detection if required - you can also pass existing detections

Using a different language or platform? We also have a JavaScript client and iOS app.

Installation

You can install the library using pip:

pip install vitallens

Quickstart

To get started, you'll need an API key for the VITALLENS methods. You can get a free key from the rouast.com API page.

Here's a quick example of how to analyze a video file and get vital signs:

import vitallens

# Your API key from https://www.rouast.com/api
API_KEY = "YOUR_API_KEY"

# Initialize the client.
# Method.VITALLENS automatically selects the best available model for your plan.
vl = vitallens.VitalLens(method=vitallens.Method.VITALLENS, api_key=API_KEY)

# Analyze a video file
# You can also pass a numpy array of shape (n_frames, height, width, 3)
video_path = 'path/to/your/video.mp4'
results = vl(video_path)

# Print the results
if results:
  vital_signs = results[0]['vital_signs']
  hr = vital_signs.get('heart_rate', {}).get('value')
  rr = vital_signs.get('respiratory_rate', {}).get('value')
  sdnn = vital_signs.get('hrv_sdnn', {}).get('value')

  print(f"Heart Rate: {hr:.1f} bpm")
  print(f"Respiratory Rate: {rr:.1f} rpm")
  if sdnn is not None: print(f"HRV (SDNN): {sdnn:.1f} ms")

Troubleshooting

General prerequisites are python>=3.9 and ffmpeg installed and accessible via the $PATH environment variable. On Windows, Microsoft Visual C++ must also be installed.

On newer versions of Python you may face the issue that the dependency onnxruntime cannot be installed via pip. If you are using conda, you can try installing it via conda install -c conda-forge onnxruntime, and then run pip install vitallens again. Otherwise try using Python 3.9, 3.10, or 3.11.

How to use

Configuring vitallens.VitalLens

To start using vitallens, first create an instance of vitallens.VitalLens. It can be configured using the following parameters:

Parameter Description Default
method Inference method. {e.g., Method.VITALLENS, Method.POS} Method.VITALLENS
mode Operation mode. {Mode.BATCH for indep. videos or Mode.BURST for video stream} Mode.BATCH
api_key Usage key for the VitalLens API (required for Method.VITALLENS) None
detect_faces True if faces need to be detected, otherwise False. True
estimate_rolling_vitals Set True to compute rolling vitals (e.g., rolling_heart_rate). True
fdet_max_faces The maximum number of faces to detect (if necessary). 1
fdet_fs Frequency [Hz] at which faces should be scanned - otherwise linearly interpolated. 1.0
export_to_json If True, write results to a json file. True
export_dir The directory to which json files are written. .

Methods

You can choose from several rPPG methods:

  • Method.VITALLENS: The recommended method. Uses the VitalLens API and automatically selects the best model for your API key (e.g., VitalLens 2.0 with HRV support).
  • Method.VITALLENS_2_0: Forces the use of the VitalLens 2.0 model.
  • Method.VITALLENS_1_0: Forces the use of the VitalLens 1.0 model.
  • Method.VITALLENS_1_1: Forces the use of the VitalLens 1.1 model.
  • Method.POS, Method.CHROM, Method.G: Classic rPPG algorithms that run locally and do not require an API key.

Estimating vitals

Once instantiated, vitallens.VitalLens can be called to estimate vitals. In Mode.BATCH calls are assumed to be working on independent videos, whereas in Mode.BURST we expect the subsequent calls to pass the next frames of the same video (stream) as np.ndarray. Calls are configured using the following parameters:

Parameter Description Default
video The video to analyze. Either a path to a video file or np.ndarray. More info here.
faces Face detections. Ignored unless detect_faces=False. More info here. None
fps Sampling frequency of the input video. Required if video is np.ndarray. None
override_fps_target Target frequency for inference (optional - use methods's default otherwise). None
export_filename Filename for json export if applicable. None

Understanding the results

vitallens returns estimates of the following vital signs if using Mode.BATCH with a minimum of 16 frames:

Name Type Returned if
ppg_waveform Continuous waveform Always
heart_rate Global value Video at least 5 seconds long
rolling_heart_rate Continuous values Video at least 10 seconds long
respiratory_waveform Continuous waveform Using VITALLENS, VITALLENS_1_0, VITALLENS_1_1, or VITALLENS_2_0
respiratory_rate Global value Video at least 10 seconds long and using VITALLENS, VITALLENS_1_0, VITALLENS_1_1, or VITALLENS_2_0
rolling_respiratory_rate Continuous values Video at least 30 seconds long and using VITALLENS, VITALLENS_1_0, VITALLENS_1_1, or VITALLENS_2_0
hrv_sdnn Global value Video at least 20 seconds long and using VITALLENS or VITALLENS_2_0
hrv_rmssd Global value Video at least 20 seconds long and using VITALLENS or VITALLENS_2_0
hrv_lfhf Global value Video at least 55 seconds long and using VITALLENS or VITALLENS_2_0
rolling_hrv_sdnn Continuous values Video at least 60 seconds long and using VITALLENS or VITALLENS_2_0
rolling_hrv_rmssd Continuous values Video at least 60 seconds long and using VITALLENS or VITALLENS_2_0
rolling_hrv_lfhf Continuous values Video at least 60 seconds long and using VITALLENS or VITALLENS_2_0

Note that rolling metrics are only computed when estimate_rolling_vitals=True.

The estimation results are returned as a list. It contains a dict for each distinct face, with the following structure:

[
  {
    'face': {
      'coordinates': <Face coordinates for each frame as np.ndarray of shape (n_frames, 4)>,
      'confidence': <Face live confidence for each frame as np.ndarray of shape (n_frames,)>,
      'note': <Explanatory note>
    },
    'vital_signs': {
      'heart_rate': {
        'value': <Estimated global value as float scalar>,
        'unit': <Value unit>,
        'confidence': <Estimation confidence as float scalar>,
        'note': <Explanatory note>
      },
      <other vitals...>
    },
    "message": <Message about estimates>
  },
  { 
    <same structure for face 2 if present>
  },
  ...
]

Examples to get started

Live test with webcam in real-time

Test vitallens in real-time with your webcam using the script examples/live.py. This uses Mode.BURST to update results continuously (approx. every 2 seconds for Method.VITALLENS). Some options are available:

  • method: Choose from [VITALLENS, POS, G, CHROM] (Default: VITALLENS)
  • api_key: Pass your API Key. Required if using method=VITALLENS.

May need to install requirements first: pip install opencv-python

python examples/live.py --method=VITALLENS --api_key=YOUR_API_KEY

Compare results with gold-standard labels using our example script

There is an example Python script in examples/test.py which uses Mode.BATCH to run vitals estimation and plot the predictions against ground truth labels recorded with gold-standard medical equipment. Some options are available:

  • method: Choose from [VITALLENS, POS, G, CHROM] (Default: VITALLENS)
  • video_path: Path to video (Default: examples/sample_video_1.mp4)
  • vitals_path: Path to gold-standard vitals (Default: examples/sample_vitals_1.csv)
  • api_key: Pass your API Key. Required if using method=VITALLENS.

May need to install requirements first: pip install matplotlib pandas

For example, to reproduce the results from the banner image on the VitalLens API Webpage:

python examples/test.py --method=VITALLENS --video_path=examples/sample_video_2.mp4 --vitals_path=examples/sample_vitals_2.csv --api_key=YOUR_API_KEY

This sample is kindly provided by the VitalVideos dataset.

Use VitalLens API to estimate vitals from a video file

First, we create an instance of vitallens.VitalLens named vl while choosing vitallens.Method.VITALLENS as estimation method and providing the API Key.

Then, we can call vl to estimate vitals. In this case, we are estimating vitals from a video located at video.mp4. The result contains the estimation results.

from vitallens import VitalLens, Method

vl = VitalLens(method=Method.VITALLENS, api_key="YOUR_API_KEY")
result = vl("video.mp4")

Use VitalLens API on an np.ndarray of video frames

First, we create an instance of vitallens.VitalLens named vl while choosing vitallens.Method.VITALLENS as estimation method and providing the API Key.

Then, we can call vl to estimate vitals. In this case, we are passing a np.ndarray my_video_arr of shape (n, h, w, c) and with dtype np.uint8 containing video data. We also have to pass the frame rate my_video_fps of the video.

The result contains the estimation results.

from vitallens import VitalLens, Method

my_video_arr = ...
my_video_fps = 30
vl = VitalLens(method=Method.VITALLENS, api_key="YOUR_API_KEY")
result = vl(my_video_arr, fps=my_video_fps)

Run example script with Docker

If you encounter issues installing vitallens dependencies directly, you can use our Docker image, which contains all necessary tools and libraries. This docker image is set up to execute the example Python script in examples/test.py for you.

Prerequisites

  • Docker installed on your system.

Usage

  1. Clone the repository
git clone https://github.com/Rouast-Labs/vitallens-python.git && cd vitallens-python
  1. Build the Docker image
docker build -t vitallens .
  1. Run the Docker container

To run the example script on the sample video:

docker run vitallens \          
  --api_key "your_api_key_here" \
  --vitals_path "examples/sample_vitals_2.csv" \
  --video_path "examples/sample_video_2.mp4" \
  --method "VITALLENS"

You can also run it on your own video:

docker run vitallens \          
  --api_key "your_api_key_here" \
  --video_path "path/to/your/video.mp4" \
  --method "VITALLENS"
  1. View the results

The results will print to the console in text form.

Please note that the example script plots won't work when running them through Docker. To to get the plot as an image file, run:

docker cp <container_id>:/app/results.png .

Build

To build:

python -m build

Linting and tests

Before running tests, please make sure that you have an environment variable VITALLENS_DEV_API_KEY set to a valid API Key. To lint and run tests:

flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
pytest

Disclaimer

vitallens provides vital sign estimates for general wellness purposes only. It is not intended for medical use. Always consult with your doctor for any health concerns or for medically precise measurement.

See also our Terms of Service for the VitalLens API and our Privacy Policy.

License

This project is licensed under the MIT License.